Beyond the Prediction Machines

The Role of Causal Inference in Sports Statistics

Sean Fischer, Ph.D.

Cincinnati Reds

2023-08-07 (updated: 2023-08-05)

Initial Thoughts

Sports as Applied Research Settings

- Sports provide a research setting very similar to other business domains
- Decision makers in sports face a variety of complex problems
- Just like in many other contexts, we want to know what will happen in the future

Power of Models

- Sports organizations employ teams of data scientists to build predictive models
- Forecasting is often the goal for these models
- Leads to a view of models as 'prediction machines'
- Teams and organizations are now more capable than ever of predicting performance or outcomes

Limits of Prediction Machines

- But prediction machines are inherently limited
- The limitations become apparent when we use models to address questions about cause and effect
- They will always struggle to generate estimates of debiased causal effects

Practitioners Need to Know More About the Effects of Decisions

- Coaches, support staff, and front-office staff all make decisions that generate consequences
- Data scientists can help support making better decisions by helping decision makers to understand the effects of their decisions
- Need to be able to help others make efficient and productive decisions

Causal Inference as A Solution

- By employing causal inference solutions, where appropriate, sports data scientists can give more accurate guidance to others
- But, experiments are often not feasible
- Need to produce experience with design-based methods of analysis

Case Study 1: Mode of Travel Effects in Cross Country?

- The NCAA Championships in cross country are held at different venues year to year
- The NCAA pays for teams' travel
- For teams within 500 miles, covers the cost of driving
- For teams over 500 miles away, covers the cost of flying
- Should teams consider spending limited budgets to cover the additional cost of flying?

Case Study 1: The Available Data

- Bijan Mazaheri's LACCTiC site provides standardized race times
- Also includes predictions for what athletes should run
- Has results for the 2019, 2021, and 2022 NCAA D3 Championships
- Distances between schools and race courses estimated via Google Maps's Distance Matrix API

- The most common data science approach to answering this question would be to build a regression model
- Still a regression model even if we use fancier methods to improve our estimates
- Include the treatment variable and some controls
- Perfectly fine approach if we want to describe the relationship between distance from the race course and performance

##	#	A tibble: 9 × 5				
##		term	estimate	<pre>std.error</pre>	statistic	p.value
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	(Intercept)	-0.240	0.0303	-7.90	8.80e-15
##	2	treat	0.000934	0.00149	0.627	5.31e- 1
##	3	<pre>as.factor(race_year)2021</pre>	0.0118	0.00193	6.10	1.64e- 9
##	4	<pre>as.factor(race_year)2022</pre>	0.0282	0.00224	12.6	1.47e-33
##	5	yearSO	0.00476	0.00391	1.22	2.24e- 1
##	6	yearJR	0.00358	0.00392	0.912	3.62e- 1
##	7	yearSR	0.00697	0.00394	1.77	7.71e- 2
##	8	yearGR	0.0108	0.00421	2.56	1.07e- 2
##	9	lacctic_rating_2	0.000219	0.0000328	6.69	4.10e-11

##	#	A tibble: 9 × 5				
##		term	estimate	<pre>std.error</pre>	statistic	p.value
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	(Intercept)	-0.261	0.0562	-4.64	0.00000690
##	2	treat	0.00298	0.00272	1.10	0.274
##	3	as.factor(race_year)2021	0.00227	0.00353	0.641	0.522
##	4	as.factor(race_year)2022	0.0226	0.00422	5.35	0.00000288
##	5	yearSO	0.00805	0.00589	1.37	0.174
##	6	yearJR	0.00176	0.00607	0.290	0.772
##	7	yearSR	0.00849	0.00587	1.45	0.150
##	8	yearGR	0.0114	0.00637	1.80	0.0742
##	9	lacctic_rating_2	0.000250	0.0000621	4.02	0.0000874

- This model is telling us that teams that are eligible to fly do not gain a measurable benefit over those that have to drive
- How confident are we that all the back door paths have been closed?
- We could keep adding controls or use more advanced regression techniques
- The rabbit hole of complexity
- Need to think about sources of bias, but also our ability to communicate the results

Case Study 1: A Causal Inference Approach

- But, we can also employ a design-based approach to solve this problem!
- We have a running variable in the distance variable with a natural cutoff
- Distance to the championship site has no real baring on whether teams qualify, so we have a source of as-if randomness!
- Do teams on either side of the cutoff perform differently?

- This situation is really a regression discontinuity design!
- We can leverage the as-if randomness around the cutoff
- As long as there is balance/comparability between units on either side of the cutoff, the difference we observe is attributable to flying vs. driving
- Can use the rdrobust package in R to identify the best bandwidth for our analysis and to generate estimates

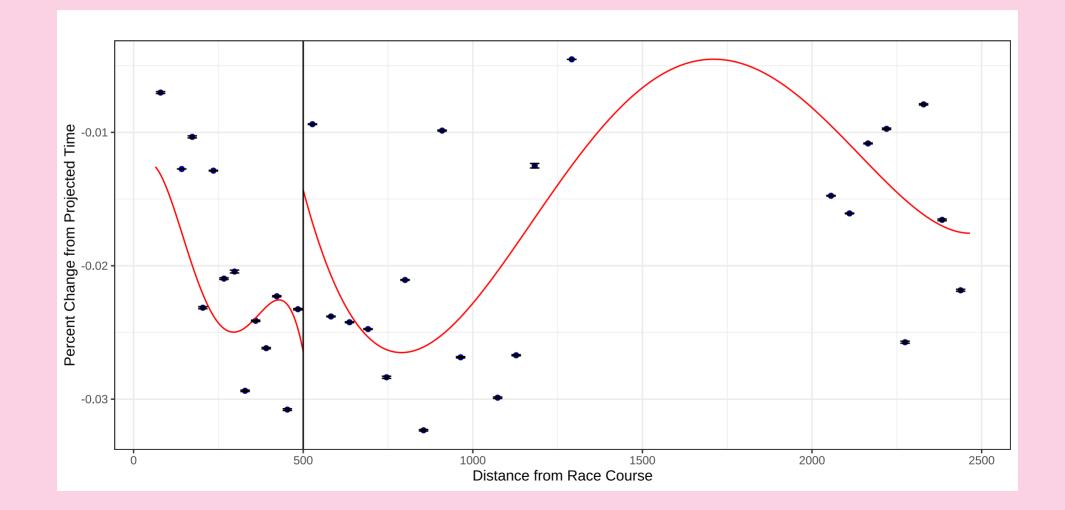
Case Study 1: RDD + Matching

- RDD methods make strong assumptions about covariate balance
- Including control variables can help meet this assumption
- But, matching methods can improve this process

Case Study 1: The RDD + Matching

- Matching implemented between a mix of genetic and exact matching
- $\bullet \ Treatment \sim Distance + Talent + Age + Course + Year$
- The matched dataset is then passed to the robust RDD process

Case Study 1: RDD + Matching



Case Study 1: RDD + Matching

Covariate-adjusted Sharp RD estimates using local polynomial regression.
##

$\pi\pi$						
##	Number of Obs.		838			
##	BW type		Manual			
##	Kernel		Triangular			
##	VCE method		NN			
##						
##	Number of Obs.		272	566		
##	Eff. Number of Obs.	•	48	59		
##	Order est. (p)		1	1		
##	Order bias (q)		2	2		
##	BW est. (h)		81.000	81.000		
##	BW bias (b)		153.000	153.000		
##	rho (h/b)		0.529	0.529		
##						
##	=======================================	======	============	================		
##	Method	Coef.	Std. Err.	Z	P> z	[95% C.I.]
##	=======================================	======	===========	=============	======	=======================================
				4.800	0.000	[0.011 , 0.025]
##	Bias-Corrected			5.359	0.000	
##	Robust	0.020	0.004	4.975	0.000	[0.012 , 0.028]
##	=======================================	======	============	===============	======	=======================================

Case Study 1: Results

- Teams that get to fly instead of drive do better!
- We can also see that the farther teams have to drive the worst they have to do
- Teams that can afford to fly would gain a marginal benefit from doing so
- But maybe not worth the additional expense?

Final Thoughts

Conclusions

- Professional sports statistics relies heavily on regression methods
- But, drawing causal conclusions from simple or advance regression methods is statistically risky
- More complex causal modeling is also plagued by obfuscation
- Stakeholders have a hard time penetrating the methodological black box

Conclusions

- Design-based methods should get more use by practioners
- Design-based methods give practioners the ability estimate debiased effects
- Design-based methods reflect simple processes
- Design-based methods are generally easier to communicate to stakeholders

Beyond the Prediction Machines

The Role of Causal Inference in Sports Statistics

Sean Fischer, Ph.D.

Cincinnati Reds

sfischer@reds.com

- Baumer, B. S., Matthews, G. J., & Nguyen, Q. (2023). Big ideas in sports analytics and statistical tools for their investigation. Wiley Interdisciplinary Reviews: Computational Statistics, e1612.
- Calonico, S., Cattaneo, M. D., & Titiunik, R. (2015). Rdrobust: an R package for robust nonparametric inference in regression-discontinuity designs. R J., 7(1), 38.
- Cunningham, Scott. (2022). "The Ongoing Role of Machine Learning Engineers and Data Scientists in Industry's Lucas Critique". Substack.

- Fischer, K., Reade, J. J., & Schmal, W. B. (2022). What cannot be cured must be endured: The long-lasting effect of a COVID-19 infection on workplace productivity. Labour Economics, 79, 102281.
- Fischer, S. (2021). The Causal Effects of Early-Career Playing Time on the Fourth-Year Performance of NBA Players.
- Gibbs, C. P., Elmore, R., & Fosdick, B. K. (2022). The causal effect of a timeout at stopping an opposing run in the NBA. The Annals of Applied Statistics, 16(3), 1359-1379.

- Hünermund, P., Kaminski, J., & Schmitt, C. (2022). Causal machine learning and business decision making. Available at SSRN 3867326.
- Keele, L., Titiunik, R., & Zubizarreta, J. R. (2015). Enhancing a geographic regression discontinuity design through matching to estimate the effect of ballot initiatives on voter turnout. Journal of the Royal Statistical Society Series A: Statistics in Society, 178(1), 223-239.
- Langen, H., & Huber, M. (2023). How causal machine learning can leverage marketing strategies: Assessing and improving the

- Reade, J. J., Schreyer, D., & Singleton, C. (2022). Eliminating supportive crowds reduces referee bias. Economic Inquiry, 60(3), 1416-1436.
- Rubin, D. B. (2008). For objective causal inference, design trumps analysis.
- Toumi, A., Zhao, H., Chhatwal, J., Linas, B. P., & Ayer, T. (2021). The effect of NFL and NCAA football games on the spread of COVID-19 in the United States: an empirical analysis. medRxiv, 2021-02.

- Weimer, L., Steinert-Threlkeld, Z. C., & Coltin, K. (2023). A causal approach for detecting team-level momentum in NBA games. Journal of Sports Analytics, 9(2), 117-132.
- Yam, D. R., & Lopez, M. J. (2019). What was lost? A causal estimate of fourth down behavior in the National Football League. Journal of Sports Analytics, 5(3), 153-167.

Case Study 2: Should Athletes Go Out Faster than Target Pace?

- Track and field athletes have a limited number of opportunities to run fast times during the college season
- Coaches are asked to submit a target time for their athletes
- Coaches can enter faster times than their athletes have run
- Should coaches enter overly aggressive entry times?

Case Study 2: The Available Data

- Collected data from the 2023 David Hemery Invitational at Boston University
- Considered only the 5000m run

- Consider a proxy-treatment variable
- First-half race pace
- Does running faster in the first half of the race lead to running faster for the whole race?
- Can answer this with simple regression model

## #	A tibble: 5 × 5				
##	term	estimate	std.error	statistic	p.value
##	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
## 1	(Intercept)	-0.0106	0.00303	-3.50	0.000572
## 2	AgeJR	0.00117	0.00365	0.321	0.749
## 3	AgeS0	0.00366	0.00365	1.00	0.316
## 4	AgeSR	0.000151	0.00362	0.0416	0.967
## 5	<pre>rel_pace_halfway_pct</pre>	-0.886	0.140	-6.35	0.0000000139

.....

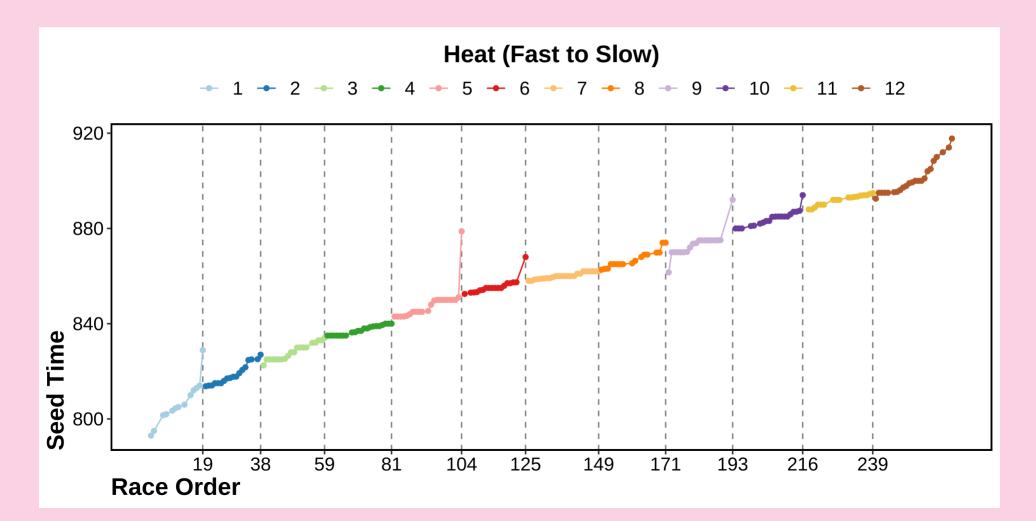
. . . .

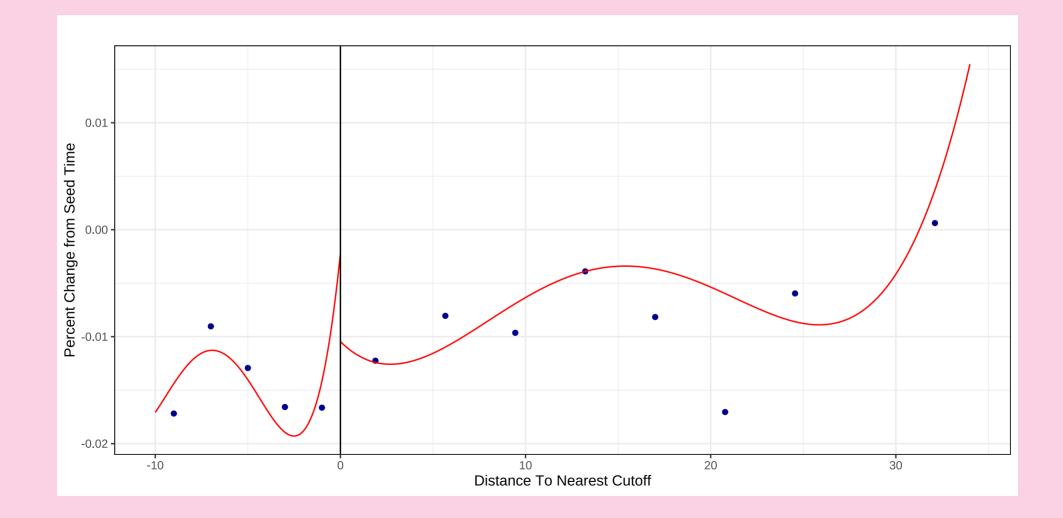
- These results cannot get us away from the usual concerns with observational causal inference
- We have to worry about the common sources of bias
- What haven't we measured here?

Case Study 2: A Causal Inference Approach

- Are there sources of natural randomness that we can leverage?
- Yes!
- The cutoffs between heats are established independent of the seed times
- That is, the cutoff between heats creates comparable groups at the bottom and top of back-to-back heats

- In this set up, we can apply a multi-cutpoint RDD or we can recenter all the cutpoints
- The running variable is athletes' distance to the next cutoff
- The cutoffs are the last times to get into each heat





A tibble: 3 × 7

##	term	estimate	std.error	statistic	p.value	conf.low	conf.high
##	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
## 1	Conventional	0.0367	0.0693	0.530	0.596	-0.0991	0.173
## 2	Bias-Corrected	0.0355	0.0693	0.512	0.608	-0.100	0.171
## 3	Robust	0.0355	0.0709	0.500	0.617	-0.104	0.175

Case Study 2: Conclusion

- No significant effect of moving up a heat!
- Moving up a heat does not seem to be associated with going out too fast
- But, there also does not seem to be a benefit